Sulfite preservatives effects on the mouth microbiome: Changes in viability, diversity and composition of microbiota

Author:

Irwin Sally V.ORCID,Deardorff Luz Maria,Deng Youping,Fisher Peter,Gould Michelle,June Junnie,Kent Rachael S.,Qin Yujia,Yadao Fracesca

Abstract

Overview Processed foods make up about 70 percent of the North American diet. Sulfites and other food preservatives are added to these foods largely to limit bacterial contamination. The mouth microbiota and its associated enzymes are the first to encounter food and therefore likely to be the most affected. Methods Eight saliva samples from ten individuals were exposed to two sulfite preservatives, sodium sulfite and sodium bisulfite. One sample set was evaluated for bacteria composition utilizing 16s rRNA sequencing, and the number of viable cells in all sample sets was determined utilizing ATP assays at 10 and 40-minute exposure times. All untreated samples were analyzed for baseline lysozyme activity, and possible correlations between the number of viable cells and lysozyme activity. Results Sequencing indicated significant increases in alpha diversity with sodium bisulfite exposure and changes in relative abundance of 3 amplicon sequence variants (ASV). Sodium sulfite treated samples showed a significant decrease in the Firmicutes/Bacteroidetes ratio, a marginally significant change in alpha diversity, and a significant change in the relative abundance for Proteobacteria, Firmicutes, Bacteroidetes, and for 6 ASVs. Beta diversity didn’t show separation between groups, however, all but one sample set was observed to be moving in the same direction under sodium sulfite treatment. ATP assays indicated a significant and consistent average decrease in activity ranging from 24–46% at both exposure times with both sulfites. Average initial rates of lysozyme activity between all individuals ranged from +/- 76% compared to individual variations of +/- 10–34%. No consistent, significant correlation was found between ATP and lysozyme activity in any sample sets. Conclusions Sulfite preservatives, at concentrations regarded as safe by the FDA, alter the relative abundance and richness of the microbiota found in saliva, and decrease the number of viable cells, within 10 minutes of exposure.

Funder

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference47 articles.

1. Oral microbiomes: more and more importance in oral cavity and whole body;L. Gao;Protein & Cell,2018

2. Quantifying Live Microbial Load in Human Saliva Samples over Time Reveals Stable Composition and Dynamic Load;C. Marotz;MSystems,2021

3. Insights into the human oral microbiome;D. Verma;Archives of Microbiology,2018

4. Oral microbiome: Unveiling the fundamentals;PN Deo;Journal of Oral and Maxillofacial Pathology. Wolters Kluwer Medknow Publications,2019

5. Temporal Stability of the Salivary Microbiota in Oral Health.;D Belstrøm;PLoS One [Internet],2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3