Biomechanical responses of human lumbar spine and pelvis according to the Roussouly classification

Author:

Wang Wei,Pei BaoqingORCID,Wu Shuqin,Lu Da,He Peiyan,Ma Chenghao,Wu Xueqing

Abstract

Background Few studies have analyzed the different biomechanical properties of the lumbar with various morphological parameters, which play an important role in injury and degeneration. This study aims to preliminarily investigate biomechanical characteristics of the spine with different sagittal alignment morphotypes by using finite element (FE) simulation and in-vitro testing. Methods According to the lumbar-pelvic radiographic parameters of the Chinese population, the parametric FE models (L1-S1-pelvis) of Roussouly’s type (1–4) were validated and developed based on the in-vitro biomechanical testing. A pure moment of 7.5 Nm was applied in the three anatomical planes to simulate the physiological activities of flexion, extension, left-right lateral bending and left-right axial rotation. Results The sagittal configuration of four Roussouly’s type models had a strong effect on the biomechanical responses in flexion and extension. The apex of the lumbar lordosis is a critical position where the segment has the lowest range of motion among all the models. In flexion-extension, type 3 and 4 models with a good lordosis shape had a more uniform rotation distribution at each motor function segment, however, type 1 and 2 models with a straighter spine had a larger proportion of rotation at the L5-S1 level. In addition, type 1 and 2 models had higher intradiscal pressures (IDPs) at the L4-5 segment in flexion, while type 4 model had larger matrix and fiber stresses at the L5-S1 segment in extension. Conclusion The well-marched lordotic type 3 lumbar had greater stability, however, a straighter spine (type 1 and 2) had poor balance and load-bearing capacity. The hypolordotic type 4 model showed larger annulus fiber stress. Therefore, the sagittal alignment of Roussouly’s type models had different kinetic and biomechanical responses under various loading conditions, leading to different clinical manifestations of the lumbar disease.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference36 articles.

1. Influence of sagittal balance on spinal lumbar loads: A numerical approach;F Galbusera;Clin Biomech,2013

2. Human balance, the evolution of bipedalism and dysequilibrium syndrome;JR Skoyles;Med Hypotheses,2006

3. A Barycentremetic Study of the Sagittal Shape of Spine and Pelvis: The Conditions Required for an Economic Standing Position;R Poincar;Ann Biomed Eng,1992

4. Biomechanical analysis of the spino-pelvic organization and adaptation in pathology;P Roussouly;Eur Spine J,2011

5. Sagittal plane deformity: An overview of interpretation and management;P Roussouly;European Spine Journal,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3