The scalability of common paradigms for assessment of cognitive function: A functional transcranial Doppler study

Author:

Intharakham KannakornORCID,Panerai Ronney B.,Robinson Thompson G.

Abstract

Cognitive paradigms induce changes in cerebral blood flow (CBF) associated with increased metabolic demand, namely neurovascular coupling (NVC). We tested the hypothesis that the effect of complexity and duration of cognitive paradigms will either enhance or inhibit the NVC response. Bilateral CBF velocity (CBFV) in the middle cerebral arteries (MCAs) via transcranial Doppler ultrasound (TCD), blood pressure (BP), electrocardiogram (ECG) and end-tidal CO2 (EtCO2) of 16 healthy participants (aged 21–71 years) were simultaneously recorded at rest and during randomized paradigms of different complexities (naming words beginning with P-,R-,V- words and serial subtractions of 100–2,100–7,1000–17), and durations (5s, 30s and 60s). CBFV responses were population mean normalized from a 30-s baseline period prior to task initiation. A significant increase in bilateral CBFV response was observed at the start of all paradigms and provided a similar pattern in most responses, irrespective of complexity or duration. Although significant inter-hemispherical differences were found during performance of R-word and all serial subtraction paradigms, no lateralisation was observed in more complex naming word tasks. Also, the effect of duration was manifested at late stages of 100–7, but not for other paradigms. CBFV responses could not distinguish different levels of complexity or duration with a single presentation of the cognitive paradigm. Further studies of the ordinal scalability of the NVC response are needed with more advanced modelling techniques, or different types of neural stimulation.

Funder

Ministry of Higher Education, Science, Research and Innovation, Thai Government

National Institute for Health Research

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference92 articles.

1. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease;H Girouard;J Appl Physiol (1985).,2006

2. Regulation of cerebral blood flow;EC Peterson;Int J Vasc Med,2011

3. Blood-brain barrier, brain metabolism and cerebral blood flow;OB Paulson;Eur Neuropsychopharmacol,2002

4. Neurovascular regulation in the normal brain and in Alzheimer’s disease;C. Iadecola;Nat Rev Neurosci,2004

5. Vascular and haemodynamic issues of brain ageing;L Beishon;Pflugers Arch,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3