Discriminatory Gleason grade group signatures of prostate cancer: An application of machine learning methods

Author:

Mokoatle MphoORCID,Mapiye Darlington,Marivate Vukosi,Hayes Vanessa M.,Bornman Riana

Abstract

One of the most precise methods to detect prostate cancer is by evaluation of a stained biopsy by a pathologist under a microscope. Regions of the tissue are assessed and graded according to the observed histological pattern. However, this is not only laborious, but also relies on the experience of the pathologist and tends to suffer from the lack of reproducibility of biopsy outcomes across pathologists. As a result, computational approaches are being sought and machine learning has been gaining momentum in the prediction of the Gleason grade group. To date, machine learning literature has addressed this problem by using features from magnetic resonance imaging images, whole slide images, tissue microarrays, gene expression data, and clinical features. However, there is a gap with regards to predicting the Gleason grade group using DNA sequences as the only input source to the machine learning models. In this work, using whole genome sequence data from South African prostate cancer patients, an application of machine learning and biological experiments were combined to understand the challenges that are associated with the prediction of the Gleason grade group. A series of machine learning binary classifiers (XGBoost, LSTM, GRU, LR, RF) were created only relying on DNA sequences input features. All the models were not able to adequately discriminate between the DNA sequences of the studied Gleason grade groups (Gleason grade group 1 and 5). However, the models were further evaluated in the prediction of tumor DNA sequences from matched-normal DNA sequences, given DNA sequences as the only input source. In this new problem, the models performed acceptably better than before with the XGBoost model achieving the highest accuracy of 74 ± 01, F1 score of 79 ± 01, recall of 99 ± 0.0, and precision of 66 ± 0.1.

Funder

South African Medical Research Council

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference59 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3