Optimised CO2-containing medium for in vitro culture and transportation of mouse preimplantation embryos without CO2 incubator

Author:

Kikuchi Yasuyuki,Wakayama Sayaka,Ito Daiyu,Ooga Masatoshi,Wakayama TeruhikoORCID

Abstract

Conventional in vitro culture and manipulation of mouse embryos require a CO2 incubator, which not only increases the cost of performing experiments but also hampers the transport of embryos to the other laboratories. In this study, we established and tested a new CO2 incubator-free embryo culture system and transported embryos using this system. Using an Anaero pouch, which is a CO2 gas-generating agent, to increase the CO2 partial pressure of CZB medium to 4%–5%, 2-cell embryos were cultured to the blastocyst stage in a sealed tube without a CO2 incubator at 37°C. Further, the developmental rate to blastocyst and full-term development after embryo transfer were comparable with those of usual culture method using a CO2 incubator (blastocyst rate: 97% versus 95%, respectively; offspring rate: 30% versus 35%, respectively). Furthermore, using a thermal bottle, embryos were reliably cultured using this system for up to 2 days at room temperature, and live offspring were obtained from embryos transported in this simple and very low-cost manner without reducing the offspring rate (thermal bottle: 26.2% versus CO2 incubator: 34.3%). This study demonstrates that CO2 incubators are not essential for embryo culture and transportation and that this system provides a useful, low-cost alternative for mouse embryo culture and manipulation.

Funder

takeda science foundation

asada science foundation

Naito Foundation

japan society for the promotion of science

Canon Foundation for Scientific Research

Takahashi Industrial and Economic Research Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3