Incubator-independent perfusion system integrated with microfluidic device for continuous electrophysiology and microscopy readouts

Author:

Habibey RouhollahORCID

Abstract

Abstract Advances in primary and stem cell derived neuronal cell culture techniques and abundance of available neuronal cell types have enabled in vitro neuroscience as a substantial approach to model in vivo neuronal networks. Survival of the cultured neurons is inevitably dependent on the cell culture incubators to provide stable temperature and humidity and to supply required CO2 levels for controlling the pH of culture medium. Therefore, imaging and electrophysiology recordings outside of the incubator are often limited to the short-term experimental sessions. This restricts our understanding of physiological events to the short snapshots of recorded data while the major part of temporal data is neglected. Multiple custom-made and commercially available platforms like integrated on-stage incubators have been designed to enable long-term microscopy. Nevertheless, long-term high-spatiotemporal electrophysiology recordings from developing neuronal networks needs to be addressed. In the present work an incubator-independent polydimethylsiloxane-based double-wall perfusion chamber was designed and integrated with multi-electrode arrays (MEAs) electrophysiology and compartmentalized microfluidic device to continuously record from engineered neuronal networks at sub-cellular resolution. Cell culture media underwent iterations of conditioning to the ambient CO2 and adjusting its pH to physiological ranges to retain a stable pH for weeks outside of the incubator. Double-wall perfusion chamber and an integrated air bubble trapper reduced media evaporation and osmolality drifts of the conditioned media for two weeks. Aligned microchannel-microfluidic device on MEA electrodes allowed neurite growth on top of the planar electrodes and amplified their extracellular activity. This enabled continuous sub-cellular resolution imaging and electrophysiology recordings from developing networks and their growing neurites. The on-chip versatile and self-contained system provides long-term, continuous and high spatiotemporal access to the network data and offers a robust in vitro platform with many potentials to be applied on advanced cell culture systems including organ-on-chip and organoid models.

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3