Investigation on factors affecting early strength of high-performance concrete by Gaussian Process Regression

Author:

Ly Hai-BangORCID,Nguyen Thuy-Anh,Pham Binh Thai

Abstract

This study aims to investigate the influence of all the mixture components of high-performance concrete (HPC) on its early compressive strength, ranging from 1 to 14 days. To this purpose, a Gaussian Process Regression (GPR) algorithm was first constructed using a database gathered from the available literature. The database included the contents of cement, blast furnace slag (BFS), fly ash (FA), water, superplasticizer, coarse, fine aggregates, and testing age as input variables to predict the output of the problem, which was the early compressive strength. Several standard statistical criteria, such as the Pearson correlation coefficient, root mean square error and mean absolute error, were used to quantify the performance of the GPR model. To analyze the sensitivity and influence of the HPC mixture components, partial dependence plots analysis was conducted with both one-dimensional and two-dimensional. Firstly, the results showed that the GPR performed well in predicting the early strength of HPC. Second, it was determined that the cement content and testing age of HPC were the most sensitive and significant elements affecting the early strength of HPC, followed by the BFS, water, superplasticizer, FA, fine aggregate, and coarse aggregate contents. To put it simply, this research might assist engineers select the appropriate amount of mixture components in the HPC production process to obtain the necessary early compressive strength.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference48 articles.

1. High-performance concrete demystified;P.C. Aitcin;Concrete International,1993

2. High Performance Concrete

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3