A method of detecting apple leaf diseases based on improved convolutional neural network

Author:

Di JieORCID,Li QingORCID

Abstract

Apple tree diseases have perplexed orchard farmers for several years. At present, numerous studies have investigated deep learning for fruit and vegetable crop disease detection. Because of the complexity and variety of apple leaf veins and the difficulty in judging similar diseases, a new target detection model of apple leaf diseases DF-Tiny-YOLO, based on deep learning, is proposed to realize faster and more effective automatic detection of apple leaf diseases. Four common apple leaf diseases, including 1,404 images, were selected for data modeling and method evaluation, and made three main improvements. Feature reuse was combined with the DenseNet densely connected network and further realized to reduce the disappearance of the deep gradient, thus strengthening feature propagation and improving detection accuracy. We introduced Resize and Re-organization (Reorg) and conducted convolution kernel compression to reduce the calculation parameters of the model, improve the operating detection speed, and allow feature stacking to achieve feature fusion. The network terminal uses convolution kernels of 1 × 1, 1 × 1, and 3 × 3, in turn, to realize the dimensionality reduction of features and increase network depth without increasing computational complexity, thus further improving the detection accuracy. The results showed that the mean average precision (mAP) and average intersection over union (IoU) of the DF-Tiny-YOLO model were 99.99% and 90.88%, respectively, and the detection speed reached 280 FPS. Compared with the Tiny-YOLO and YOLOv2 network models, the new method proposed in this paper significantly improves the detection performance. It can also detect apple leaf diseases quickly and effectively.

Funder

National Natural Science Foundation of China

Department of Human Resources and Social Security of Xinjiang Uygur Autonomous Region

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference41 articles.

1. Apple leaf disease identification using genetic algorithm and correlation based feature selection method;Za Chuanlei;Int J Agric & Biol Eng,2017

2. Deep Learning Convolutional Neural Network for Apple Leaves Disease Detection;S Baranwal;SSRN Electronic Journal,2019

3. Real-time Plant Health Assessment Via Implementing Cloud-based Scalable Transfer Learning On AWS DeepLens;A Khan;PLoS ONE,2020

4. CCDF: Automatic system for segmentation and recognition of fruit crops diseases based on correlation coefficient and deep CNN features;MA Khan;Computers and Electronics in Agriculture,2018

5. Identification of Disease in Leaves using Genetic Algorithm;KB Suganthy;Journal of Trend in Scientific Research and Development,2019

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3