Computational exploration of novel ROCK2 inhibitors for cardiovascular disease management; insights from high-throughput virtual screening, molecular docking, DFT and MD simulation

Author:

Ali IqraORCID,Iqbal Muhammad Nasir,Ibrahim Muhammad,Haq Ihtisham Ul,Alonazi Wadi B.ORCID,Siddiqi Abdul Rauf

Abstract

Cardiovascular disorders are the world’s major cause of death nowadays. To treat cardiovascular diseases especially coronary artery diseases and hypertension, researchers found potential ROCK2 (Rho-associated coiled-coil-containing protein kinase 2) target due to its substantial role in NO-cGMP and RhoA/ROCK pathway. Available drugs for ROCK2 are less effective and some of them depict side effects. Therefore, a set of novel compounds were screened that can potentially inhibit the activity of ROCK2 and help to treat cardiovascular diseases by employing In-silico techniques. In this study, we undertook ligand based virtual screening of 50 million compound’s library, to that purpose shape and features (contain functional groups) based pharmacophore query was modelled and validated by Area Under Curve graph (AUC). 2000 best hits were screened for Lipinski’s rule of 5 compliance. Subsequently, these selected compounds were docked into the binding site of ROCK2 to gain insights into the interactions between hit compounds and the target protein. Based on binding affinity and RMSD scores, a final cohort of 15 compounds were chosen which were further refined by pharmacokinetics, ADMET and bioactivity scores. 2 potential hits were screened using density functional theory, revealing remarkable biological and chemical activity. Potential inhibitors (F847-0007 and 9543495) underwent rigorous examination through MD Simulations and MMGBSA analysis, elucidating their stability and strong binding affinities. Results of current study unveil the potential of identified novel hits as promising lead compounds for ROCK2 associated with cardiovascular diseases. These findings will further investigate via In-vitro and In-vivo studies to develop novel druglike molecules against ROCK2.

Funder

King Saud University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference32 articles.

1. Epidemiology of smoking-induced cardiovascular disease;D. M. Burns;Prog. Cardiovasc. Dis.,2003

2. microRNA in cardiovascular aging and age-related cardiovascular diseases;C. de Lucia;Front. Med.,2017

3. Genetics of human cardiovascular disease;S. Kathiresan;Cell,2012

4. Cardiovascular disease;E. G. Nabel;N. Engl. J. Med.,2003

5. Vascular nitric oxide: Beyond eNOS;Y. Zhao;J. Pharmacol. Sci.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3