In silico exploration of anti-prostate cancer compounds from differential expressed genes

Author:

Ajiboye Basiru Olaitan,Fatoki Toluwase Hezekiah,Akinola Olamilekan Ganiu,Ajeigbe Kazeem Olasunkanmi,Bamisaye Abraham Fisayo,Domínguez-Martín Eva-María,Rijo Patricia,Oyinloye Babatunji Emmanuel

Abstract

AbstractProstate cancer (PCa) is a complex and biologically diverse disease with no curative treatment options at present. This study aims to utilize computational methods to explore potential anti-PCa compounds based on differentially expressed genes (DEGs), with the goal of identifying novel therapeutic indications or repurposing existing drugs. The methods employed in this study include DEGs-to-drug prediction, pharmacokinetics prediction, target prediction, network analysis, and molecular docking. The findings revealed a total of 79 upregulated DEGs and 110 downregulated DEGs in PCa, which were used to identify drug compounds capable of reversing the dysregulated conditions (dexverapamil, emetine, parthenolide, dobutamine, terfenadine, pimozide, mefloquine, ellipticine, and trifluoperazine) at a threshold probability of 20% on several molecular targets, such as serotonin receptors 2a/2b/2c, HERG protein, adrenergic receptors alpha-1a/2a, dopamine D3 receptor, inducible nitric oxide synthase (iNOS), epidermal growth factor receptor erbB1 (EGFR), tyrosine-protein kinases, and C-C chemokine receptor type 5 (CCR5). Molecular docking analysis revealed that terfenadine binding to inducible nitric oxide synthase (-7.833 kcal.mol−1) and pimozide binding to HERG (-7.636 kcal.mol−1). Overall, binding energy ΔGbind (Total) at 0 ns was lower than that of 100 ns for both the Terfenadine-iNOS complex (-101.707 to -103.302 kcal.mol−1) and Ellipticine-TOPIIα complex (-42.229 to -58.780 kcal.mol−1). In conclusion, this study provides insight on molecular targets that could possibly contribute to the molecular mechanisms underlying PCa. Further preclinical and clinical studies are required to validate the therapeutic effectiveness of these identified drugs in PCa disease.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3