Physiological traits contribute to growth and adaptation of Mexican maize landraces

Author:

Pace Brian A.,Perales Hugo R.,Gonzalez-Maldonado NoelymarORCID,Mercer Kristin L.ORCID

Abstract

Local adaptation of populations results from an interplay between their environment and genetics. If functional trait variation influences plant performance, populations can adapt to their local environment. However, populations may also respond plastically to environmental challenges, altering phenotype without shifting allele frequencies. The level of local adaptation in crop landraces and their capacity for plasticity in response to environmental change may predict their continued utility to farmers facing climate change. Yet we understand little about how physiological traits potentially underlying local adaptation of cultivars influence fitness. Farmers in Mexico—the crop center of origin for maize—manage and rely upon a high diversity of landraces. We studied maize grown in Chiapas, Mexico, where strong elevational gradients cover a relatively small geographic area. We reciprocally transplanted 12 populations sourced from three elevational zones (600, 1550 and 2150 m) back into those elevations for two years using a modified split-split plot design to model effects of environment, genetics, and their interaction. We studied physiological and growth traits, including photosynthetic rate, stomatal conductance, stomatal density, relative growth rate (RGR), and seed production. Maize fitness showed indications of local adaptation with highland and midland types performing poorly at warmer lowland locations, though patterns depended on the year. Several physiological traits, including stomatal conductance, were affected by G x E interactions, some of which indicated non-adaptive plastic responses with potential fitness implications. We discerned a significant positive relationship between fitness and relative growth rate. Growth rates in highland landraces were outperformed by midland and lowland landraces grown in high temperature, lowland garden. Lowland landrace stomatal conductance was diminished compared to that of highland landraces in the cooler highland garden. Thus, both adaptive and non-adaptive physiological responses of maize landraces in southern Mexico may have implications for fitness, as well as responses to climate change.

Funder

National Geographic Committee on Research and Exploration Grant

Tinker Foundation

Ohio State University through a Competitive Research Grant

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference65 articles.

1. Evolution of Suites of Traits in Response to Environmental Stress;FS Chapin;Am Nat,1993

2. The Evolution of Functional Traits in Plants: Is the Giant Still Sleeping?;CM Caruso;Int J Plant Sci,2020

3. The Effects of a Heterogeneous Environment on the Genetics of Natural Populations: The realization that environments differ has had a profound effect on our views of the origin and role of genetic variability in populations;J. Antonovics;Am Sci,1971

4. Gene Flow and the Geographic Structure of Natural Populations;M. Slatkin;Science,1987

5. Analysis of population genetic structure and gene flow in an annual plant before and after a rapid evolutionary response to drought;RS Welt;AoB PLANTS,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3