Discovering SNP-disease relationships in genome-wide SNP data using an improved harmony search based on SNP locus and genetic inheritance patterns

Author:

Esmaeili Fariba,Narimani ZahraORCID,Vasighi MahdiORCID

Abstract

Advances in high-throughput sequencing technologies have made it possible to access millions of measurements from thousands of people. Single nucleotide polymorphisms (SNPs), the most common type of mutation in the human genome, have been shown to play a significant role in the development of complex and multifactorial diseases. However, studying the synergistic interactions between different SNPs in explaining multifactorial diseases is challenging due to the high dimensionality of the data and methodological complexities. Existing solutions often use a multi-objective approach based on metaheuristic optimization algorithms such as harmony search. However, previous studies have shown that using a multi-objective approach is not sufficient to address complex disease models with no or low marginal effect. In this research, we introduce a locus-driven harmony search (LDHS), an improved harmony search algorithm that focuses on using SNP locus information and genetic inheritance patterns to initialize harmony memories. The proposed method integrates biological knowledge to improve harmony memory initialization by adding SNP combinations that are likely candidates for interaction and disease causation. Using a SNP grouping process, LDHS generates harmonies that include SNPs with a higher potential for interaction, resulting in greater power in detecting disease-causing SNP combinations. The performance of the proposed algorithm was evaluated on 200 synthesized datasets for disease models with and without marginal effect. The results show significant improvement in the power of the algorithm to find disease-related SNP sets while decreasing computational cost compared to state-of-the-art algorithms. The proposed algorithm also demonstrated notable performance on real breast cancer data, showing that integrating prior knowledge can significantly improve the process of detecting disease-related SNPs in both real and synthesized data.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference60 articles.

1. Visweswaran S, Wong A-KI, Barmada MM, editors. A Bayesian method for identifying genetic interactions. AMIA Annual Symposium Proceedings; 2009: American Medical Informatics Association.

2. FPGA-based acceleration of detecting statistical epistasis in GWAS;L Wienbrandt;Procedia Computer Science,2014

3. A random forest approach to the detection of epistatic interactions in case-control studies;R Jiang;BMC bioinformatics,2009

4. SNPInterForest: a new method for detecting epistatic interactions;M Yoshida;BMC bioinformatics,2011

5. A comparison of methods for interpreting random forest models of genetic association in the presence of non-additive interactions;A Orlenko;BioData mining,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3