DBU-Net: Dual branch U-Net for tumor segmentation in breast ultrasound images

Author:

Pramanik PayelORCID,Pramanik Rishav,Schwenker FriedhelmORCID,Sarkar RamORCID

Abstract

Breast ultrasound medical images often have low imaging quality along with unclear target boundaries. These issues make it challenging for physicians to accurately identify and outline tumors when diagnosing patients. Since precise segmentation is crucial for diagnosis, there is a strong need for an automated method to enhance the segmentation accuracy, which can serve as a technical aid in diagnosis. Recently, the U-Net and its variants have shown great success in medical image segmentation. In this study, drawing inspiration from the U-Net concept, we propose a new variant of the U-Net architecture, called DBU-Net, for tumor segmentation in breast ultrasound images. To enhance the feature extraction capabilities of the encoder, we introduce a novel approach involving the utilization of two distinct encoding paths. In the first path, the original image is employed, while in the second path, we use an image created using the Roberts edge filter, in which edges are highlighted. This dual branch encoding strategy helps to extract the semantic rich information through a mutually informative learning process. At each level of the encoder, both branches independently undergo two convolutional layers followed by a pooling layer. To facilitate cross learning between the branches, a weighted addition scheme is implemented. These weights are dynamically learned by considering the gradient with respect to the loss function. We evaluate the performance of our proposed DBU-Net model on two datasets, namely BUSI and UDIAT, and our experimental results demonstrate superior performance compared to state-of-the-art models.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference44 articles.

1. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries;H Sung;CA: a cancer journal for clinicians,2021

2. A Multi-Stage Approach to Breast Cancer Classification Using Histopathology Images;A Bagchi;Diagnostics,2022

3. A Deep Feature Selection Method for Tumor Classification in Breast Ultrasound Images

4. Breast cancer in low-and middle-income countries: an emerging and challenging epidemic;A Tfayli;Journal of oncology,2010

5. Detection of tumour infiltrating lymphocytes in CD3 and CD8 stained histopathological images using a two-phase deep CNN;MM Zafar;Photodiagnosis and Photodynamic Therapy,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3