DAU-Net: Dual attention-aided U-Net for segmenting tumor in breast ultrasound images

Author:

Pramanik Payel,Roy Ayush,Cuevas Erik,Perez-Cisneros Marco,Sarkar RamORCID

Abstract

Breast cancer remains a critical global concern, underscoring the urgent need for early detection and accurate diagnosis to improve survival rates among women. Recent developments in deep learning have shown promising potential for computer-aided detection (CAD) systems to address this challenge. In this study, a novel segmentation method based on deep learning is designed to detect tumors in breast ultrasound images. Our proposed approach combines two powerful attention mechanisms: the novel Positional Convolutional Block Attention Module (PCBAM) and Shifted Window Attention (SWA), integrated into a Residual U-Net model. The PCBAM enhances the Convolutional Block Attention Module (CBAM) by incorporating the Positional Attention Module (PAM), thereby improving the contextual information captured by CBAM and enhancing the model’s ability to capture spatial relationships within local features. Additionally, we employ SWA within the bottleneck layer of the Residual U-Net to further enhance the model’s performance. To evaluate our approach, we perform experiments using two widely used datasets of breast ultrasound images and the obtained results demonstrate its capability in accurately detecting tumors. Our approach achieves state-of-the-art performance with dice score of 74.23% and 78.58% on BUSI and UDIAT datasets, respectively in segmenting the breast tumor region, showcasing its potential to help with precise tumor detection. By leveraging the power of deep learning and integrating innovative attention mechanisms, our study contributes to the ongoing efforts to improve breast cancer detection and ultimately enhance women’s survival rates. The source code of our work can be found here: https://github.com/AyushRoy2001/DAUNet.

Publisher

Public Library of Science (PLoS)

Reference71 articles.

1. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries;F Bray;CA: a cancer journal for clinicians,2018

2. Pramanik P, Mukhopadhyay S, Kaplun D, Sarkar R. A deep feature selection method for tumor classification in breast ultrasound images. In: International conference on mathematics and its applications in new computer systems. Springer; 2021. p. 241–252.

3. Region of interest segmentation based on clustering techniques for breast cancer ultrasound images: A review;M Muhammad;Journal of Applied Science and Technology Trends,2020

4. Breast ultrasound image segmentation: a survey;Q Huang;International journal of computer assisted radiology and surgery,2017

5. A comparative study of pre-trained convolutional neural networks for semantic segmentation of breast tumors in ultrasound;W Gómez-Flores;Computers in Biology and Medicine,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3