Prospective evaluation of deep learning image reconstruction for Lung-RADS and automatic nodule volumetry on ultralow-dose chest CT

Author:

Yoo Seung-JinORCID,Park Young Sik,Choi Hyewon,Kim Da Som,Goo Jin MoORCID,Yoon Soon HoORCID

Abstract

Purpose To prospectively evaluate whether Lung-RADS classification and volumetric nodule assessment were feasible with ultralow-dose (ULD) chest CT scans with deep learning image reconstruction (DLIR). Methods The institutional review board approved this prospective study. This study included 40 patients (mean age, 66±12 years; 21 women). Participants sequentially underwent LDCT and ULDCT (CTDIvol, 0.96±0.15 mGy and 0.12±0.01 mGy) scans reconstructed with the adaptive statistical iterative reconstruction-V 50% (ASIR-V50) and DLIR. CT image quality was compared subjectively and objectively. The pulmonary nodules were assessed visually by two readers using the Lung-RADS 1.1 and automatically using a computerized assisted tool. Results DLIR provided a significantly higher signal-to-noise ratio for LDCT and ULDCT images than ASIR-V50 (all P < .001). In general, DLIR showed superior subjective image quality for ULDCT images (P < .001) and comparable quality for LDCT images compared to ASIR-V50 (P = .01–1). The per-nodule sensitivities of observers for Lung-RADS category 3–4 nodules were 70.6–88.2% and 64.7–82.4% for DLIR-LDCT and DLIR-ULDCT images (P = 1) and categories were mostly concordant within observers. The per-nodule sensitivities of the computer-assisted detection for nodules ≥4 mm were 72.1% and 67.4% on DLIR-LDCT and ULDCT images (P = .50). The 95% limits of agreement for nodule volume differences between DLIR-LDCT and ULDCT images (-85.6 to 78.7 mm3) was similar to the within-scan nodule volume differences between DLIR- and ASIR-V50-LDCT images (-63.9 to 78.5 mm3), with volume differences smaller than 25% in 88.5% and 92.3% of nodules, respectively (P = .65). Conclusion DLIR enabled comparable Lung-RADS and volumetric nodule assessments on ULDCT images to LDCT images.

Funder

GE Healthcare

Publisher

Public Library of Science (PLoS)

Reference33 articles.

1. Reduced lung-cancer mortality with low-dose computed tomographic screening;National Lung Screening Trial Research T;N Engl J Med,2011

2. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial;HJ de Koning;N Engl J Med,2020

3. National lung cancer screening in Korea: introduction and imaging quality control;HY Kim;Journal of the Korean Society of Radiology,2019

4. Lung cancer screening with low-dose CT: a world-wide view;PF Pinsky;Transl Lung Cancer Res,2018

5. Pulmonary nodule detection: low-dose versus conventional CT.;H Rusinek;RadiologyEpub 1998,1998

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3