Abstract
Purpose
To prospectively evaluate whether Lung-RADS classification and volumetric nodule assessment were feasible with ultralow-dose (ULD) chest CT scans with deep learning image reconstruction (DLIR).
Methods
The institutional review board approved this prospective study. This study included 40 patients (mean age, 66±12 years; 21 women). Participants sequentially underwent LDCT and ULDCT (CTDIvol, 0.96±0.15 mGy and 0.12±0.01 mGy) scans reconstructed with the adaptive statistical iterative reconstruction-V 50% (ASIR-V50) and DLIR. CT image quality was compared subjectively and objectively. The pulmonary nodules were assessed visually by two readers using the Lung-RADS 1.1 and automatically using a computerized assisted tool.
Results
DLIR provided a significantly higher signal-to-noise ratio for LDCT and ULDCT images than ASIR-V50 (all P < .001). In general, DLIR showed superior subjective image quality for ULDCT images (P < .001) and comparable quality for LDCT images compared to ASIR-V50 (P = .01–1). The per-nodule sensitivities of observers for Lung-RADS category 3–4 nodules were 70.6–88.2% and 64.7–82.4% for DLIR-LDCT and DLIR-ULDCT images (P = 1) and categories were mostly concordant within observers. The per-nodule sensitivities of the computer-assisted detection for nodules ≥4 mm were 72.1% and 67.4% on DLIR-LDCT and ULDCT images (P = .50). The 95% limits of agreement for nodule volume differences between DLIR-LDCT and ULDCT images (-85.6 to 78.7 mm3) was similar to the within-scan nodule volume differences between DLIR- and ASIR-V50-LDCT images (-63.9 to 78.5 mm3), with volume differences smaller than 25% in 88.5% and 92.3% of nodules, respectively (P = .65).
Conclusion
DLIR enabled comparable Lung-RADS and volumetric nodule assessments on ULDCT images to LDCT images.
Publisher
Public Library of Science (PLoS)
Reference33 articles.
1. Reduced lung-cancer mortality with low-dose computed tomographic screening;National Lung Screening Trial Research T;N Engl J Med,2011
2. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial;HJ de Koning;N Engl J Med,2020
3. National lung cancer screening in Korea: introduction and imaging quality control;HY Kim;Journal of the Korean Society of Radiology,2019
4. Lung cancer screening with low-dose CT: a world-wide view;PF Pinsky;Transl Lung Cancer Res,2018
5. Pulmonary nodule detection: low-dose versus conventional CT.;H Rusinek;RadiologyEpub 1998,1998
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献