Detection of Pulmonary Nodules on Ultra-low Dose Chest Computed Tomography With Deep-learning Image Reconstruction Algorithm

Author:

Bocquet Wesley1,Bouzerar Roger2,François Géraldine3,Leleu Antoine1,Renard Cédric1

Affiliation:

1. Department of Radiology

2. Biophysics and Image Processing Unit

3. Department of Pneumology and Transplantation, Amiens University Hospital, Amiens, France

Abstract

Purpose: To evaluate the accuracy of ultra-low dose (ULD) chest computed tomography (CT), with a radiation exposure equivalent to a 2-view chest x-ray, for pulmonary nodule detection using deep learning image reconstruction (DLIR). Material and Methods: This prospective cross-sectional study included 60 patients referred to our institution for assessment or follow-up of solid pulmonary nodules. All patients underwent low-dose (LD) and ULD chest CT within the same examination session. LD CT data were reconstructed using Adaptive Statistical Iterative Reconstruction-V (ASIR-V), whereas ULD CT data were reconstructed using DLIR and ASIR-V. ULD CT images were reviewed by 2 readers and LD CT images were reviewed by an experienced thoracic radiologist as the reference standard. Quantitative image quality analysis was performed, and the detectability of pulmonary nodules was assessed according to their size and location. Results: The effective radiation dose for ULD CT and LD CT were 0.13±0.01 and 1.16±0.6 mSv, respectively. Over the whole population, LD CT revealed 733 nodules. At ULD, DLIR images significantly exhibited better image quality than ASIR-V images. The overall sensitivity of DLIR reconstruction for the detection of solid pulmonary nodules from the ULD CT series was 93% and 82% for the 2 readers, with a good to excellent agreement with LD CT (ICC=0.82 and 0.66, respectively). The best sensitivities were observed in the middle lobe (97% and 85%, respectively). Conclusions: At ULD, DLIR reconstructions, with minimal radiation exposure that could facilitate large-scale screening, allow the detection of pulmonary nodules with high sensitivity in an unrestricted BMI population.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3