Exponential adoption of battery electric cars

Author:

Jung FelixORCID,Schröder Malte,Timme Marc

Abstract

The adoption of battery electric vehicles (BEVs) may significantly reduce greenhouse gas emissions caused by road transport. However, there is wide disagreement as to how soon battery electric vehicles will play a major role in overall transportation. Focusing on battery electric passenger cars, we analyze BEV adoption across 17 individual countries, Europe, and the World, and consistently find exponential growth trends. Modeling-based estimates of future adoption given past trends suggest system-wide adoption substantially faster than typical economic analyses have proposed so far. For instance, we estimate the majority of passenger cars in Europe to be electric by about 2031. Within regions, the predicted times of mass adoption are largely insensitive to model details. Despite significant differences in current electric fleet sizes across regions, their growth rates consistently indicate fast doubling times of approximately 15 months, hinting at radical economic and infrastructural consequences in the near future.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference101 articles.

1. IPCC. Synthesis Report (SYR) of the IPCC Sixth Assessment Report (AR6). Intergovernmental Panel on Climate Change; 2023. Available from: https://www.ipcc.ch/report/sixth-assessment-report-cycle/.

2. Modern Global Climate Change;TR Karl;Science,2003

3. Contributions of Individual Countries’ Emissions to Climate Change and Their Uncertainty;N Höhne;Clim Change,2011

4. Developed and Developing World Contributions to Climate System Change Based on Carbon Dioxide, Methane and Nitrous Oxide Emissions;T Wei;Adv Atmos Sci,2016

5. Transport and Climate Change: A Review;L Chapman;J Transp Geogr,2007

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3