Energy saving, load bearing and attachment mechanism on ice and frozen ground of biomimetic mechanical foot

Author:

Li Guoyu,Zhang RuiORCID,Pang Hao,Luo Yexuan,Hong Yong,Li Zhisong,Zhang Hua,Wen Lige

Abstract

The frozen ground robot can be widely and prospectively applied in plentiful fields, such as military rescue and planet exploration. Based on the energy-saving, load-bearing, and attachment functions of reindeer hooves, we studied the kinematics of reindeer feet and designed a biomimetic energy-saving attachment mechanical foot (mechanical foot I) and two contrast mechanical feet (mechanical feet II and III). The energy-saving and load-bearing performances of the biomimetic mechanical foot were tested on a motion mechanics platform, which revealed this mechanical foot was adaptive to three types of ground (frozen ground, ice, and water ice lunar soil). Mechanical foot I possesses the functions of elastic energy storage and power consumption reduction, and its power range is from -2.77 to -27.85 W. Compared with mechanical foot III, the load-bearing ability of mechanical foot I was improved by the dewclaws, and the peak forces in the X, Y, and Z directions increased by about 2.54, 1.25 and 1.31 times, respectively. When mechanical foot I acted with more- smooth surface, the joint range of motion (ROM) increased, changes of the three-directional force at the foot junction decreased. The forces were the lowest on ice among the three types of ground, the X-, Y- and Z-directional changes were about 62.96, 83.7, and 319.85 N respectively, and the ROMs for the ankle joint and metatarsophalangeal joint of mechanical foot I were about 17.93° and 16.10°, respectively. This study revealed the active adaptation mechanism between the biomimetic mechanical foot and ice or frozen ground, and thus theoretically underlies research on the biomimetic mechanical foot.

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3