Adaptive optimal control of under-actuated robotic systems using a self-regulating nonlinear weight-adjustment scheme: Formulation and experimental verification

Author:

Saleem OmerORCID,Rizwan MohsinORCID,Iqbal JamshedORCID

Abstract

This paper formulates an innovative model-free self-organizing weight adaptation that strengthens the robustness of a Linear Quadratic Regulator (LQR) for inverted pendulum-like mechatronic systems against perturbations and parametric uncertainties. The proposed control procedure is devised by using an online adaptation law to dynamically adjust the state weighting factors of LQR’s quadratic performance index via pre-calibrated state-error-dependent hyperbolic secant functions (HSFs). The updated state-weighting factors re-compute the optimal control problem to modify the state-compensator gains online. The novelty of the proposed article lies in adaptively adjusting the variation rates of the said HSFs via an auxiliary model-free online self-regulation law that uses dissipative and anti-dissipative terms to flexibly re-calibrate the nonlinear function’s waveforms as the state errors vary. This augmentation increases the controller’s design flexibility and enhances the system’s disturbance rejection capacity while economizing control energy expenditure under every operating condition. The proposed self-organizing LQR is analyzed via customized hardware-in-loop (HIL) experiments conducted on the Quanser’s single-link rotational inverted pendulum. As compared to the fixed-gain LQR, the proposed SR-EM-STC delivers an improvement of 52.2%, 16.4%, 55.2%, and 42.7% in the pendulum’s position regulation behavior, control energy expenditure, transient recovery duration, and peak overshoot, respectively. The experimental outcomes validate the superior robustness of the proposed scheme against exogenous disturbances.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3