Debris flow volume prediction model based on back propagation neural network optimized by improved whale optimization algorithm

Author:

Ni Bo,Li LiORCID,Lin Hanjie,Qiang Yue,Wu Hengbin,Zhang Zhongxu,Zhang Yi

Abstract

Debris flow is a sudden natural disaster in mountainous areas, which seriously threatens the lives and property of nearby residents. Therefore, it is necessary to predict the volume of debris flow accurately and reliably. However, the predictions of back propagation neural networks are unstable and inaccurate due to the limited dataset. In this study, the Cubic map optimizes the initial population position of the whale optimization algorithm. Meanwhile, the adaptive weight adjustment strategy optimizes the weight value in the shrink-wrapping mechanism of the whale optimization algorithm. Then, the improved whale optimization algorithm optimizes the final weights and thresholds in the back propagation neural network. Finally, to verify the performance of the final model, sixty debris flow gullies caused by earthquakes in Longmenshan area are selected as the research objects. Through correlation analysis, 4 main factors affecting the volume of debris flow are determined and inputted into the model for training and prediction. Four methods (support vector machine regression, XGBoost, back propagation neural network optimized by artificial bee colony algorithm, back propagation neural network optimized by grey wolf optimization algorithm) are used to compare the prediction performance and reliability. The results indicate that loose sediments from co-seismic landslides are the most important factor influencing the flow of debris flows in the earthquake area. The mean absolute percentage error, mean absolute error and R2 of the final model are 0.193, 29.197 × 104 m3 and 0.912, respectively. The final model is more accurate and stable when the dataset is insufficient and under complexity. This is attributed to the optimization of WOA by Cubic map and adaptive weight adjustment. In general, the model of this paper can provide reference for debris flow prevention and machine learning algorithms.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3