A dynamic traffic signal scheduling system based on improved greedy algorithm

Author:

Sun Guangling,Qi RuiORCID,Liu Yulong,Xu Feng

Abstract

Urbanization has led to accelerated traffic congestion, posing a significant obstacle to urban development. Traditional traffic signal scheduling methods are often inefficient and cumbersome, resulting in unnecessary waiting times for vehicles and pedestrians, exacerbating the traffic situation. To address this issue, this article proposes a dynamic traffic signal scheduling system based on an improved greedy algorithm. Unlike conventional approaches, we introduce a reward function and a cost model to ensure fair scheduling plans. A constraint function is also established, and the traffic signal scheduling is iterated through the feasible matrix using the greedy algorithm to simplify the decision-making process and enhance solution efficiency. Moreover, an emergency module is integrated to prioritize special emergency vehicles, reducing their response time during emergencies. To validate the effectiveness of our dynamic traffic signal scheduling system, we conducted simulation experiments using the Simulation of Urban Mobility (SUMO) traffic simulation suite and the SUMO traffic control interface Traci. The results indicate that our system significantly improves intersection throughput and adapts well to various traffic conditions, effectively resolving urban traffic congestion while ensuring fair scheduling plans.

Funder

2023 Anhui Provincial Department of Education Natural Science Research Projects in Colleges and Universities

Publisher

Public Library of Science (PLoS)

Reference46 articles.

1. Abundance of mass 47 CO2 in urban air, car exhaust, and human breath;HP Affek;Geochim Cosmochim Acta,2006

2. Megacities and atmospheric pollution.;MJ Molina;J Air Waste Manag Assoc,2004

3. Deformation models for image recognition;D Keysers;IEEE Transactions on Pattern Analysis and Machine Intelligence,2007

4. Design of traffic sign detection, recognition, and transmission systems for smart vehicles;A Mammeri;IEEE Wireless Communications,2013

5. Reinforcement learning with constrained uncertain reward function through particle filtering;O Dogru;IEEE Transactions on Industrial Electronics,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3