A Division-of-Labour Approach to Traffic Light Scheduling

Author:

Raubenheimer Hendrik1,Engelbrecht Andries123ORCID

Affiliation:

1. Computer Science Division, Stellenbosch University, Stellenbosch 7600, South Africa

2. Department of Industrial Engineering, Stellenbosch University, Stellenbosch 7600, South Africa

3. Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait

Abstract

Traffic light scheduling is a critical aspect of traffic management with many recently developed solutions that incorporate computational intelligence approaches. This paper presents a traffic light scheduling algorithm based on a task allocation model that simulates the division of labour among insects in a colony, specifically ant colonies. The developed algorithm switches the green light based on a probability calculated every second from the traffic volume around the traffic light. The application of this algorithm to several benchmark simulated traffic scenarios shows optimal performance compared to five other traffic scheduling algorithms.

Publisher

MDPI AG

Reference26 articles.

1. An assessment of traffic congestion and its effect on productivity in urban Ghana;Harriet;Int. J. Bus. Soc. Sci.,2013

2. The U.S. Environmental Protection Agency (2023, July 01). Global Greenhouse Gas Emissions Data, Available online: https://www.epa.gov/ghgemissions/global-greenhouse-gas-overview.

3. State-of-art review of traffic signal control methods: Challenges and opportunities;Qadri;Eur. Transp. Res. Rev.,2020

4. Tomar, I., Sreedevi, I., and Pandey, N. (2022). State-of-Art Review of Traffic Light Synchronization for Intelligent Vehicles: Current Status, Challenges, and Emerging Trends. Electronics, 11.

5. Wei, H., Zheng, G., Gayah, V., and Li, Z. (2019). A Survey on Traffic Signal Control Methods. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3