Abstract
Introduction
Machine learning as a clinical decision support system tool has the potential to assist clinicians who must make complex and accurate medical decisions in fast paced environments such as the emergency department. This paper presents a protocol for a scoping review, with the objective of summarising the existing research on machine learning clinical decision support system tools in the emergency department, focusing on models that can be used for paediatric patients, where a knowledge gap exists.
Materials and methods
The methodology used will follow the scoping study framework of Arksey and O’Malley, along with other guidelines. Machine learning clinical decision support system tools for any outcome and population (paediatric/adult/mixed) for use in the emergency department will be included. Articles such as grey literature, letters, pre-prints, editorials, scoping/literature/narrative reviews, non-English full text papers, protocols, surveys, abstract or full text not available and models based on synthesised data will be excluded. Articles from the last five years will be included. Four databases will be searched: Medline (EBSCO), CINAHL (EBSCO), EMBASE and Cochrane Central. Independent reviewers will perform the screening in two sequential stages (stage 1: clinician expertise and stage 2: computer science expertise), disagreements will be resolved by discussion. Data relevant to the research question will be collected. Quantitative analysis will be performed to generate the results.
Discussion
The study results will summarise the existing research on machine learning clinical decision support tools in the emergency department, focusing on models that can be used for paediatric patients. This holds the promise to identify opportunities to both incorporate models in clinical practice and to develop future models by utilising reviewers from diverse backgrounds and relevant expertise.
Funder
Technological University Dublin
Publisher
Public Library of Science (PLoS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献