Applied machine learning techniques for chronic disease treatment default prediction and its potential benefits for patient outcome: A case series study approach

Author:

Owusu-Adjei MichaelORCID,Abdul-Salaam Gaddafi,Frimpong Twum,Hayfron-Acquah James Ben

Abstract

AbstractIn medical diagnosis context, consideration for missing diagnosis and false diagnosis of disease types are important clinical considerations for disease treatment decisions. Effect and impact of disease types especially on others forms the basis for critical clinical decisions. Impact and consequences varies across disease types especially for communicable and non-communicable diseases. Increasing use of predictive techniques owing to high use of connected internet of things devices in healthcare provides sufficient opportunity for potential benefit assessment of predictive modeling impact on disease treatment management. Effective and efficient management of non-communicable diseases such as hypertension is hampered in part by instances of multiple forms of its occurrence in patients leading to treatment management complications. Probing predictive modeling effect and implications for clinical decisions to enhance patient treatment outcome provides important evidence-based justifications for its use in healthcare systems. Effective predictive technique use is significantly dependent on areas of its application and the consequences of error for its use in context.Author summaryThe use of macro average score in class imbalance context is to treat all classes equally regardless of variations in class distributions. Clinical significance as identified in this research work includes the determination of effective and accurate predictive modeling techniques for real-world application context where class distribution variation is a characteristic feature. Identifying various sections of healthcare delivery process ensures effective application of predictive modeling techniques for the required impact on clinical decisions and its effect on patient outcome.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3