The suppression effect of emotional contagion in the COVID-19 pandemic: A multi-layer hybrid modelling and simulation approach

Author:

Guo XudongORCID,Tong JunboORCID,Chen Peiyu,Fan Wenhui

Abstract

The entire world has suffered a lot since the outbreak of the novel coronavirus (COVID-19) in 2019, so simulation models of COVID-19 dynamics are urgently needed to understand and control the pandemic better. Meanwhile, emotional contagion, the spread of vigilance or panic, serves as a negative feedback to the epidemic, but few existing models take it into consideration. In this study, we proposed an innovative multi-layer hybrid modelling and simulation approach to simulate disease transmission and emotional contagion together. In each layer, we used a hybrid simulation method combining agent-based modelling (ABM) with system dynamics modelling (SDM), keeping spatial heterogeneity while reducing computation costs. We designed a new emotion dynamics model IWAN (indifferent, worried, afraid and numb) to simulate emotional contagion inside a community during an epidemic. Our model was well fit to the data of China, the UK and the US during the COVID-19 pandemic. If there weren’t emotional contagion, our experiments showed that the confirmed cases would increase rapidly, for instance, the total confirmed cases during simulation in Guangzhou, China would grow from 334 to 2096, which increased by 528%. We compared the calibrated emotional contagion parameters of different countries and found that the suppression effect of emotional contagion in China is relatively more visible than that in the US and the UK. Due to the experiment results, the proposed multi-layer network model with hybrid simulation is valid and can be applied to the quantitative analysis of the epidemic trends and the suppression effect of emotional contagion in different countries. Our model can be modified for further research to study other social factors and intervention policies in the COVID-19 pandemic or future epidemics.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference36 articles.

1. Pharmaceutical Technology. WHO declares Covid-19 outbreak a pandemic. 2020. https://www.pharmaceutical-technology.com/news/who-declares-covid-19-pandemic (26 January 2021, date last accessed).

2. Johns Hopkins Coronavirus Resource Center. 2020. https://coronavirus.jhu.edu (22 January 2021, date last accessed).

3. Global stability for the SEIR model in epidemiology;MY Li;Math Biosci,1995

4. Fast SM. Pandemic panic: A network-based approach to predicting social response during a disease outbreak [dissertation]. Massachusetts: Massachusetts Institute of Technology; 2014.

5. Effect of non-pharmaceutical interventions to contain COVID-19 in China;S Lai;Nature,2020

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3