Abstract
Taste stimuli can induce a variety of physiological reactions depending on the quality and/or hedonics (overall pleasure) of tastants, for which objective methods have long been desired. In this study, we used artificial intelligence (AI) technology to analyze facial expressions with the aim of assessing its utility as an objective method for the evaluation of food and beverage hedonics compared with conventional subjective (perceived) evaluation methods. The face of each participant (10 females; age range, 21–22 years) was photographed using a smartphone camera a few seconds after drinking 10 different solutions containing five basic tastes with different hedonic tones. Each image was then uploaded to an AI application to achieve outcomes for eight emotions (surprise, happiness, fear, neutral, disgust, sadness, anger, and embarrassment), with scores ranging from 0 to 100. For perceived evaluations, each participant also rated the hedonics of each solution from –10 (extremely unpleasant) to +10 (extremely pleasant). Based on these, we then conducted a multiple linear regression analysis to obtain a formula to predict perceived hedonic ratings. The applicability of the formula was examined by combining the emotion scores with another 11 taste solutions obtained from another 12 participants of both genders (age range, 22–59 years). The predicted hedonic ratings showed good correlation and concordance with the perceived ratings. To our knowledge, this is the first study to demonstrate a model that enables the prediction of hedonic ratings based on emotional facial expressions to food and beverage stimuli.
Funder
Japan Society for the Promotion of Science
Project Research grant from Kio University
Publisher
Public Library of Science (PLoS)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献