Large-scale interactive retrieval in art collections using multi-style feature aggregation

Author:

Ufer NikolaiORCID,Simon Max,Lang Sabine,Ommer Björn

Abstract

Finding objects and motifs across artworks is of great importance for art history as it helps to understand individual works and analyze relations between them. The advent of digitization has produced extensive digital art collections with many research opportunities. However, manual approaches are inadequate to handle this amount of data, and it requires appropriate computer-based methods to analyze them. This article presents a visual search algorithm and user interface to support art historians to find objects and motifs in extensive datasets. Artistic image collections are subject to significant domain shifts induced by large variations in styles, artistic media, and materials. This poses new challenges to most computer vision models which are trained on photographs. To alleviate this problem, we introduce a multi-style feature aggregation that projects images into the same distribution, leading to more accurate and style-invariant search results. Our retrieval system is based on a voting procedure combined with fast nearest-neighbor search and enables finding and localizing motifs within an extensive image collection in seconds. The presented approach significantly improves the state-of-the-art in terms of accuracy and search time on various datasets and applies to large and inhomogeneous collections. In addition to the search algorithm, we introduce a user interface that allows art historians to apply our algorithm in practice. The interface enables users to search for single regions, multiple regions regarding different connection types and holds an interactive feedback system to improve retrieval results further. With our methodological contribution and easy-to-use user interface, this work manifests further progress towards a computer-based analysis of visual art.

Funder

deutsche forschungsgemeinschaft

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference99 articles.

1. Memory, Metaphor, and Aby Warburg's Atlas of Images

2. Images as data: cultural analytics and Aby Warburg’s Mnemosyne;S Hristova;International Journal for Digital Art History,2016

3. Weber A. Damien Hirsts diamond-studded skull, licensed under CC BY 2.0; 2020. https://commons.wikimedia.org/wiki/File:Damien_Hirst%27s_diamond-studded_skull.jpg.

4. Wikimeadia Commons;. https://commons.wikimedia.org/.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Beyond Built Year Prediction: The Bag of Time Model and a Case Study of Buddha Images;Proceedings of the 5th Workshop on analySis, Understanding and proMotion of heritAge Contents;2023-10-29

2. A Computational Approach to Hand Pose Recognition in Early Modern Paintings;Journal of Imaging;2023-06-15

3. A Light Touch Approach to Teaching Transformers Multi-view Geometry;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3