Environmental DNA gives comparable results to morphology-based indices of macroinvertebrates in a large-scale ecological assessment

Author:

Brantschen JeanineORCID,Blackman Rosetta C.,Walser Jean-Claude,Altermatt Florian

Abstract

Anthropogenic activities are changing the state of ecosystems worldwide, affecting community composition and often resulting in loss of biodiversity. Rivers are among the most impacted ecosystems. Recording their current state with regular biomonitoring is important to assess the future trajectory of biodiversity. Traditional monitoring methods for ecological assessments are costly and time-intensive. Here, we compared monitoring of macroinvertebrates based on environmental DNA (eDNA) sampling with monitoring based on traditional kick-net sampling to assess biodiversity patterns at 92 river sites covering all major Swiss river catchments. From the kick-net community data, a biotic index (IBCH) based on 145 indicator taxa had been established. The index was matched by the taxonomically annotated eDNA data by using a machine learning approach. Our comparison of diversity patterns only uses the zero-radius Operational Taxonomic Units assigned to the indicator taxa. Overall, we found a strong congruence between both methods for the assessment of the total indicator community composition (gamma diversity). However, when assessing biodiversity at the site level (alpha diversity), the methods were less consistent and gave complementary data on composition. Specifically, environmental DNA retrieved significantly fewer indicator taxa per site than the kick-net approach. Importantly, however, the subsequent ecological classification of rivers based on the detected indicators resulted in similar biotic index scores for the kick-net and the eDNA data that was classified using a random forest approach. The majority of the predictions (72%) from the random forest classification resulted in the same river status categories as the kick-net approach. Thus, environmental DNA validly detected indicator communities and, combined with machine learning, provided reliable classifications of the ecological state of rivers. Overall, while environmental DNA gives complementary data on the macroinvertebrate community composition compared to the kick-net approach, the subsequently calculated indices for the ecological classification of river sites are nevertheless directly comparable and consistent.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Swiss Federal Office for the Environment (BAFU/FOEN).

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference73 articles.

1. Defaunation in the Anthropocene;R Dirzo;Science,2014

2. Multiple threats imperil freshwater biodiversity in the Anthropocene;D Dudgeon;Current Biology,2019

3. Global trends in nature’s contributions to people;KA Brauman;Proceedings of the National Academy of Sciences,2020

4. Biological Integrity—A Long-Neglected Aspect of Water-Resource Management;J Karr;Ecological Applications,1991

5. The importance of setting targets and reference conditions in assessing marine ecosystem quality;A Borja;Ecological Indicators,2012

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3