Field validation of a magneto-optical detection device (Gazelle) for portable point-of-care Plasmodium vivax diagnosis

Author:

Valdivia Hugo O.ORCID,Thota Priyaleela,Braga Greys,Ricopa Leonila,Barazorda Keare,Salas Carola,Bishop Danett K.,Joya Christie A.

Abstract

A major challenge for malaria is the lack of tools for accurate and timely diagnosis in the field which are critical for case management and surveillance. Microscopy along with rapid diagnostic tests are the current mainstay for malaria diagnosis in most endemic regions. However, these methods present several limitations. This study assessed the accuracy of Gazelle, a novel rapid malaria diagnostic device, from samples collected from the Peruvian Amazon between 2019 and 2020. Diagnostic accuracy was compared against microscopy and two rapid diagnostic tests (SD Bioline and BinaxNOW) using 18ssr nested-PCR as reference test. In addition, a real-time PCR assay (PET-PCR) was used for parasite quantification. Out of 217 febrile patients enrolled and tested, 180 specimens (85 P. vivax and 95 negatives) were included in the final analysis. Using nested-PCR as the gold standard, the sensitivity and specificity of Gazelle was 88.2% and 97.9%, respectively. Using a cutoff of 200 parasites/μl, Gazelle’s sensitivity for samples with more than 200 p/uL was 98.67% (95%CI: 92.79% to 99.97%) whereas the sensitivity for samples lower than 200 p/uL (n = 10) was 12.5% (95%CI: 0.32% to 52.65%). Gazelle’s sensitivity and specificity were statistically similar to microscopy (sensitivity = 91.8, specificity = 100%, p = 0.983) and higher than both SD Bioline (sensitivity = 82.4, specificity = 100%, p = 0.016) and BinaxNOW (sensitivity = 71.8%, specificity = 97.9%, p = 0.002). The diagnostic accuracy of Gazelle for malaria detection in P. vivax infections was comparable to light microscopy and superior to both RDTs even in the presence of low parasitemia infections. The performance of Gazelle makes it a valuable tool for malaria diagnosis and active case detection that can be utilized in different malaria-endemic regions.

Funder

US DoD Armed Forces Health Surveillance Division (AFHSD)/Global Emerging Infections Surveillance Branch

Hemex Health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3