EasyNAT Malaria: a simple, rapid method to detect Plasmodium species using cross-priming amplification technology

Author:

Dong Liu1ORCID,Xu Qianqian1,Shen Linjie1,Cao Ruoshui1,Deng Xuan1,Chen Jian1,Jiang Haoqin1ORCID,Guan Ming1ORCID

Affiliation:

1. Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China

Abstract

ABSTRACT Malaria infection remains a serious threat to human health worldwide. Rapid and accurate detection technology is crucial for preventing malaria transmission and minimizing damage. We aimed to establish and validate a new rapid molecular detection method for malaria, called EasyNAT Malaria Assay, targeting Plasmodium vivax , Plasmodium falciparum , Plasmodium ovale , and Plasmodium malariae . The analytical performance of EasyNAT Malaria Assay was determined using positive materials. We identified 42 clinical samples as malaria positive and 95 negative samples. Each sample was examined by four methods: light microscopy, rapid diagnostic test, EasyNAT Malaria Assay, and digital PCR. Diagnostic accuracy and clinical performance were evaluated. The limit of detection (LOD) 95% of EasyNAT Malaria was consistently 40 parasites/mL. It specifically amplified Plasmodium and performed with reliable repeatability and reproducibility. In 137 clinical samples, EasyNAT Malaria detected four more positive samples than microscopic examination and two more positive samples than rapid diagnostic test (RDT). One clinical sample was positive only under digital PCR. However, no significant differences statistically in sensitivity or specificity were observed. Compared with microscopy, the total, positive, and negative concordance rates of EasyNAT were 97.08%, 100%, and 95.79%, respectively. Enhanced diagnostic accuracy of EasyNAT Malaria in patients who had taken anti-malarial medication before their clinical appointment was observed. The EasyNAT Malaria Assay has good detection efficiency for clinical samples, presents a promising molecular detection tool in clinical practice, and is particularly suitable for rapid screening of high-risk populations in the emergency room. IMPORTANCE This study established and validated EasyNAT Malaria Assay as a promising molecular detection tool for malaria screening of high-risk populations in clinical practice. This novel isothermal amplification method may effectively facilitate the rapid diagnosis of malaria and prevent its transmission.

Funder

Shanghai Municipal Key Clinical Specialty

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3