The pattern of brain-size change in the early evolution of cetaceans

Author:

Waugh David A.ORCID,Thewissen J. G. M.

Abstract

Most authors have identified two rapid increases in relative brain size (encephalization quotient, EQ) in cetacean evolution: first at the origin of the modern suborders (odontocetes and mysticetes) around the Eocene-Oligocene transition, and a second at the origin of the delphinoid odontocetes during the middle Miocene. We explore how methods used to estimate brain and body mass alter this perceived timing and rate of cetacean EQ evolution. We provide new data on modern mammals (mysticetes, odontocetes, and terrestrial artiodactyls) and show that brain mass and endocranial volume scale allometrically, and that endocranial volume is not a direct proxy for brain mass. We demonstrate that inconsistencies in the methods used to estimate body size across the Eocene-Oligocene boundary have caused a spurious pattern in earlier relative brain size studies. Instead, we employ a single method, using occipital condyle width as a skeletal proxy for body mass using a new dataset of extant cetaceans, to clarify this pattern. We suggest that cetacean relative brain size is most accurately portrayed using EQs based on the scaling coefficients as observed in the closely related terrestrial artiodactyls. Finally, we include additional data for an Eocene whale, raising the sample size of Eocene archaeocetes to seven. Our analysis of fossil cetacean EQ is different from previous works which had shown that a sudden increase in EQ coincided with the origin of odontocetes at the Eocene-Oligocene boundary. Instead, our data show that brain size increased at the origin of basilosaurids, 5 million years before the Eocene-Oligocene transition, and we do not observe a significant increase in relative brain size at the origin of odontocetes.

Funder

Hennecke Family Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference92 articles.

1. Quantitative examination of the bottlenose dolphin cerebellum;A Hanson;Anat Rec,2013

2. Comparison of dolphins’ body and brain measurements with four other groups of cetaceans reveals great diversity;SH Ridgway;Brain Behav Evol,2016

3. Cetacean brain evolution: multiplication generates complexity;L. Marino;Int J Comp Psychol,2004

4. A comparison of encephalization between Odontocete cetaceans and anthropoid primates;L. Marino;Brain Behav Evol,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3