Cetacean Evolution: Copulatory and Birthing Consequences of Pelvic and Hindlimb Reduction

Author:

Cooper Lisa Noelle,Suydam Robert,Thewissen J. G. M.

Abstract

AbstractThe earliest fossil cetaceans (archaeocetes) dramatically shifted the shape and articulation of the pelvis and hindlimbs during the land-to-sea transition. Archaeocetes were mostly semi-aquatic “walking whales” that used powerful hindlimbs to walk on land and swim to reach new aquatic sources of food. However, skeletons of the latest diverging lineages of archaeocetes, the basilosaurids, showed that the pelvis initially lost articulation with the sacrum, and hindlimbs were reduced and encased within the body wall. Consequently, basilosaurids were no longer able to bear their weight on land and probably had a different mating strategy compared to the other archaeocetes. Basilosaurid mating behaviors were probably consistent with those of modern cetaceans, including lateral- and ventral-facing copulation. Moreover, a pelvic girdle that was no longer constrained by vertebral and limb attachments likely freed fetal development from size constraints at birth, allowing for the birth of large fetuses. This study reports new data showing growth of the pelvis with age in modern bowhead whales (Balaena mysticetus) and their implications for left-right asymmetry and sex difference in pelvic dimensions among modern cetaceans. Reproductive structures present in modern cetaceans and artiodactyls were probably present in archaeocetes, including pelvic attachment of muscles associated with erection and mobility of the penis, the ischiocavernosus, in males and the clitoris of females. Within females, transverse folds along the vaginal canal are present in some terrestrial artiodactyls, modern cetaceans, and probably archaeocetes. Vaginal folds were probably exapted to assist in successful aquatic copulation in all fossil and modern cetaceans as they may protect some sperm from the lethal effects of sea water. Taken together, shifts in the pelvic girdle of cetaceans occurred over 40 million years ago and probably required changes in mating behaviors that were consistent with those seen in modern cetaceans.

Publisher

Springer International Publishing

Reference62 articles.

1. Bajpai S, Thewissen JGM (2000) A new, diminutive Eocene whale from Kachchh (Gujarat, India) and its implications for locomotor evolution of cetaceans. Curr Sci 79(10):1478–1482

2. Benham WB (1901) On the anatomy of Cogia breviceps. Proc Zool Soc Lond 71(1):107–134. https://doi.org/10.1111/j.1469-7998.1901.tb08167.x

3. Brennan PLR, Orbach DN (2020) Copulatory behavior and its relationship to genital morphology. In: Naguib M, Barrett L, Healy SD, Podos J, Simmons LW, Zuk M (eds) Advances in the study of behavior, vol 52. Academic Press, London, pp 65–122

4. Chan YF, Marks ME, Jones FC, Villarreal G Jr, Shapiro MD, Brady SD, Kingsley DM (2010) Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327(5963):302–305. https://doi.org/10.1126/science.1182213

5. Cooper LN, Thewissen JGM, Bajpai S, Tiwari BN (2011) Postcranial morphology and locomotion of the Eocene raoellid Indohyus (Artiodactyla: Mammalia). Hist Biol 24(3):279–310. https://doi.org/10.1080/08912963.2011.624184

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3