Adaptive kernel fuzzy clustering for missing data

Author:

Rodrigues Anny K. G.,Ospina RaydonalORCID,Ferreira Marcelo R. P.

Abstract

Many machine learning procedures, including clustering analysis are often affected by missing values. This work aims to propose and evaluate a Kernel Fuzzy C-means clustering algorithm considering the kernelization of the metric with local adaptive distances (VKFCM-K-LP) under three types of strategies to deal with missing data. The first strategy, called Whole Data Strategy (WDS), performs clustering only on the complete part of the dataset, i.e. it discards all instances with missing data. The second approach uses the Partial Distance Strategy (PDS), in which partial distances are computed among all available resources and then re-scaled by the reciprocal of the proportion of observed values. The third technique, called Optimal Completion Strategy (OCS), computes missing values iteratively as auxiliary variables in the optimization of a suitable objective function. The clustering results were evaluated according to different metrics. The best performance of the clustering algorithm was achieved under the PDS and OCS strategies. Under the OCS approach, new datasets were derive and the missing values were estimated dynamically in the optimization process. The results of clustering under the OCS strategy also presented a superior performance when compared to the resulting clusters obtained by applying the VKFCM-K-LP algorithm on a version where missing values are previously imputed by the mean or the median of the observed values.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference70 articles.

1. Why so many clustering algorithms: a position paper;V Estivill-Castro;SIGKDD explorations,2002

2. Attribute weighted mercer kernel based fuzzy clustering algorithm for general non-spherical datasets;H Shen;Soft Computing,2006

3. Data clustering: a review;AK Jain;ACM computing surveys (CSUR),1999

4. Survey of Clustering Algorithms;R Xu;IEEE TRANSACTIONS ON NEURAL NETWORKS,2005

5. A survey of kernel and spectral methods for clustering;M Filippone;Pattern recognition,2008

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3