Outdoor activity classification using smartphone based inertial sensor measurements

Author:

Bodhe Rushikesh,Sivakumar SaaveethyaORCID,Sakarkar Gopal,Juwono Filbert H.,Apriono Catur

Abstract

AbstractHuman Activity Recognition (HAR) deals with the automatic recognition of physical activities and plays a crucial role in healthcare and sports where wearable sensors and intelligent computational techniques are used. We propose a HAR algorithm that uses the smartphones accelerometer data for human activity recognition. In particular, we present a recurrent convolutional neural network-based HAR algorithm that combines a Convolutional Neural Network (CNN) to extract temporal features from the sensor data, a Fuzzy C-Means (FCM) clustering algorithm to cluster the features extracted by the CNN, and a Long Short-Term Memory (LSTM) network to learn the temporal dependencies between the features. We evaluate the proposed methodology on two distinct datasets: the MotionSense dataset and the WISDM dataset. We evaluate the proposed CNN-FCM-LSTM model on the publicly available MotionSense dataset to classify ten activity types: 1) walking upstairs, 2) walking downstairs, 3) jogging, 4) sitting, 5) standing, 6) level ground walking, 7) jumping jacks, 8) brushing teeth, 9) writing, and 10) eating. Next, we evaluate the model’s performance on the WISDM dataset to assess its ability to generalize to unseen data. On the MotionSense test dataset, CNN-FCM-LSTM achieves a classification accuracy of 99.69%, a sensitivity of 99.62%, a specificity of 99.63%, and a false positive rate per hour (FPR/h) of 0.37%. Meanwhile, it achieves a classification accuracy of 97.27% on the WISDM dataset. The CNN-FCM-LSTM model’s capability to classify a diverse range of activities within a single architecture is noteworthy. The results suggest that the proposed CNN-FCM-LSTM model using smartphone inputs is more accurate, reliable, and robust in detecting and classifying activities than the state-of-the-art models. It should be noted that activity recognition technology has the potential to aid in studying the underpinnings of physical activity, designing more effective training regimens, and simulating the rigors of competition in sports.

Funder

Curtin University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3