Height-diameter allometry for tropical forest in northern Amazonia

Author:

Lima Robson Borges deORCID,Görgens Eric Bastos,Elias Fernando,de Abreu Jadson Coelho,Baia Aldine Luiza,de Oliveira Cinthia Pereira,Silva da Silva Diego Armando,Batista Anderson Pedro Bernardina,Lima Robson Carmo,Sotta Eleneide Doff,Caraciolo Ferreira Rinaldo LuizORCID,Aleixo da Silva José Antônio,Carneiro Guedes MarcelinoORCID

Abstract

Height measurements are essential to manage and monitor forest biomass and carbon stocks. However, accurate estimation of this variable in tropical ecosystems is still difficult due to species heterogeneity and environmental variability. In this article, we compare and discuss six nonlinear allometric models parameterized at different scales (local, regional and pantropical). We also evaluate the height measurements obtained in the field by the hypsometer when compared with the true tree height. We used a dataset composed of 180 harvested trees in two distinct areas located in the Amapá State. The functional form of the Weibull model was the best local model, showing similar performance to the pantropical model. The inaccuracy detected in the hypsometer estimates reinforces the importance of incorporating new technologies in measuring individual tree heights. Establishing accurate allometric models requires knowledge of ecophysiological and environmental processes that govern vegetation dynamics and tree height growth. It is essential to investigate the influence of different species and ecological gradients on the diameter/height ratio.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3