Mixed-Effects Height Prediction Model for Juniperus procera Trees from a Dry Afromontane Forest in Ethiopia

Author:

Teshome Mindaye12ORCID,Braz Evaldo Muñoz3ORCID,Torres Carlos Moreira Miquelino Eleto1ORCID,Raptis Dimitrios Ioannis4ORCID,de Mattos Patricia Povoa3ORCID,Temesgen Hailemariam5,Rubio-Camacho Ernesto Alonso6ORCID,Sileshi Gudeta Woldesemayat7ORCID

Affiliation:

1. Departamento de Engenharia Florestal, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil

2. Ethiopian Forestry Development, P.O. Box 24536, Addis Ababa 1000, Ethiopia

3. Embrapa Florestas, Estrada de Ribeira, Km 111 sn Guaraituba C.P: 319, Colombo 83411-000, PR, Brazil

4. Department of Forestry and Natural Environment, International Hellenic University, 1st Km Drama-Mikrohori, 66100 Drama, Greece

5. Department of Forest Engineering, Resources, and Management, College of Forestry, Oregon State University, Corvallis, OR 97331-5704, USA

6. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Centro de Investigación Regional Pacífico Centro, Av. Biodiversidad 2470, Tepatitlán de Morelos 47600, Jalisco, Mexico

7. Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia

Abstract

Tree height is a crucial variable in forestry science. In the current study, an accurate height prediction model for Juniperus procera Hochst. ex Endl. trees were developed, using a nonlinear mixed-effects modeling approach on 1215 observations from 101 randomly established plots in the Chilimo Dry Afromontane Forest in Ethiopia. After comparing 14 nonlinear models, the most appropriate base model was selected and expanded as a mixed-effects model, using the sample plot as a grouping factor, and adding stand-level variables to increase the model’s prediction ability. Using a completely independent dataset of observations, the best sampling alternative for calibration was determined using goodness-of-fit criteria. Our findings revealed that the Michaelis–Menten model outperformed the other models, while the expansion to the mixed-effects model significantly improved the height prediction. On the other hand, incorporating the quadratic mean diameter and the stem density slightly improved the model’s prediction ability. The fixed-effects of the selected model can also be used to predict the mean height of Juniperus procera trees as a marginal solution. The calibration response revealed that a systematic selection of the three largest-diameter trees at the plot level is the most effective for random effect estimation across new plots or stands.

Funder

Ethiopian Forestry Development

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3