Tolerance of Pseudomonas strain to the 2,4-D herbicide through a peroxidase system

Author:

de Oliveira Elizangela Paz,Rovida Amanda Flávia da Silva,Martins Juliane Gabriele,Pileggi Sônia Alvim Veiga,Schemczssen-Graeff ZelindaORCID,Pileggi MarcosORCID

Abstract

Herbicides are widely used in agricultural practices for preventing the proliferation of weeds. Upon reaching soil and water, herbicides can harm nontarget organisms, such as bacteria, which need an efficient defense mechanism to tolerate stress induced by herbicides. 2,4-Dichlorophenoxyacetic acid (2,4-D) is a herbicide that exerts increased oxidative stress among bacterial communities. Bacterial isolates were obtained from the biofilm of tanks containing washing water from the packaging of different pesticides, including 2,4-D. The Pseudomonas sp. CMA-7.3 was selected because of its tolerance against 2,4-D toxicity, among several sensitive isolates from the biofilm collection. This study aimed to evaluate the antioxidative response system of the selected strain to 2,4-D. It was analyzed the activity of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase GPX enzymes, that are poorly known in the literature for bacterial systems. The Pseudomonas sp. CMA-7.3 presented an efficient response system in balancing the production of hydrogen peroxide, even at 25x the dose of 2,4-D used in agriculture. The antioxidative system was composed of Fe–SOD enzymes, less common than Mn–SOD in bacteria, and through the activities of KatA and KatB isoforms, working together with APX and GPX, having their activities coordinated possibly by quorum sensing molecules. The peroxide control is poorly documented for bacteria, and this work is unprecedented for Pseudomonas and 2,4-D. Not all bacteria harbor efficient response system to herbicides, therefore they could affect the diversity and functionality of microbiome in contaminated soils, thereby impacting agricultural production, environment sustainability and human health.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference46 articles.

1. Neurotoxicity of pesticides;JR Richardson;Acta Neuropathologica,2019

2. A review of 2,4-Dichlorophenoxyacetic acid (2,4-D) derivatives: 2,4-D dimethylamine salt and 2,4-D butyl ester;A Qurratu;International Journal of Applied Engineering Research,2016

3. Insight into the Characteristics and New Mechanism of Nicosulfuron Biodegradation by a Pseudomonas sp. LAM1902;M Li;Journal of Agricultural and Food Chemistry,2020

4. Environmental and health effects of the herbicide glyphosate;AHC Van Bruggen;Science of The Total Environment,2018

5. Estimating Exposure to Three Commonly Used, Potentially Carcinogenic Pesticides (Chlorolathonil, 2,4-D, and Glyphosate) Among Agricultural Workers in Canada;E Rydz;Annals of Work Exposures and Health,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3