Impact of 2,4-D and Glyphosate on Soil Enzyme Activities in a Resistant Maize Cropping System

Author:

Tyler Heather L.ORCID

Abstract

Crop varieties resistant to multiple herbicides have been developed to provide better control of weed populations in row-crop fields where glyphosate resistance has become common. These new varieties include lines of maize (Zea mays) resistant to both glyphosate and 2,4-dichlorophenoxyacetic acid (2,4-D). As these herbicides have the potential to impact microbial communities in soil, there is concern that their co-application may have a greater effect on activities linked to soil nutrient cycling than if they were applied individually. To investigate this possibility, a field study was conducted on 2,4-D+glyphosate-resistant maize to determine the impact of 2,4-D alone and 2,4-D+glyphosate on extracellular enzyme activity in both bulk and rhizosphere soil. Maize was treated at the V2 and V8 developmental stages. Changes in soil activities were small in magnitude and inconsistent between timepoints. 2,4-D+glyphosate-treated plots had higher beta-glucosidase, cellobiohydrolase, and phosphatase activities, but only after the V2 application in bulk soil in the first year of the study, while no significant effects were observed in the rhizosphere. Enzyme activities were more impacted by soil organic matter than herbicide treatments. These results suggest that, when applied at label rates, 2,4-D+glyphosate application will not adversely affect soil microbial enzyme activities.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3