Memory and communication efficient algorithm for decentralized counting of nodes in networks

Author:

Saha ArindamORCID,Marshall James A. R.ORCID,Reina AndreagiovanniORCID

Abstract

Node counting on a graph is subject to some fundamental theoretical limitations, yet a solution to such problems is necessary in many applications of graph theory to real-world systems, such as collective robotics and distributed sensor networks. Thus several stochastic and naïve deterministic algorithms for distributed graph size estimation or calculation have been provided. Here we present a deterministic and distributed algorithm that allows every node of a connected graph to determine the graph size in finite time, if an upper bound on the graph size is provided. The algorithm consists in the iterative aggregation of information in local hubs which then broadcast it throughout the whole graph. The proposed node-counting algorithm is on average more efficient in terms of node memory and communication cost than its previous deterministic counterpart for node counting, and appears comparable or more efficient in terms of average-case time complexity. As well as node counting, the algorithm is more broadly applicable to problems such as summation over graphs, quorum sensing, and spontaneous hierarchy creation.

Funder

Office for Naval Research Global

Belgian F.R.S.-FNRS

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3