Adversarial scenarios for herding UAVs and counter-swarm techniques

Author:

Mendívez Vásquez Bruno L.ORCID,Barca Jan Carlo

Abstract

AbstractThe present paper aims to design and simulate an adversarial strategy where a swarm of quadrotor UAVs is herding anti-aircraft land vehicles (AALV) that actively oppose the swarm’s objective by potentially taking them down. The main strategy is to block the AALVs’ line of sight to their goal zone (AALVs’ objective), shifting its trajectory so it reaches a kill zone instead (UAVs’ objective). The counter-swarm strategy performed by the AALVs consists of taking down the closest aerial units to the goal zone. As a result, a consensus algorithm is executed by the UAVs in order to assess the communication network and re-group. Consensus is based on the propagation of local observations that converge into a global agreement on a communication graph. Re-grouping is done via positioning around the kill zone vector or preferring an anti-clockwise formation to better close gaps. The adversarial strategy was tested in an empty arena and urban setting, the latter making use of a path-planning procedure that re-routes the AALV trajectory based on its current destination. Simulation results show a maximum UAV mission success rate converging to roughly 80% in the empty arena. When targeted elimination procedures are executed, UAV mission performance drops 5%, making no distinction between re-grouping strategies in the empty arena. The urban setting shows lower performance due to navigation complexity but favors the decision to re-group based on a formation that close gaps rather than positioning around the kill zone vector.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3