Abstract
Xylem tracheids are the channels for water transport in conifer. Tracheid flow resistance is composed of tracheid lumen resistance and pit resistance. The single tracheid structure parameters in the stem and root of Sabina chinensis were obtained by dissociation and slicing, combined with numerical simulation to analyze the tracheid flow resistance characteristics. The results showed that the tracheid lumen resistance was determined by the tracheid width and tracheid length. The pit resistance was determined by the number of pits and single pit resistance. The single pit resistance was composed of four elements: the secondary cell wall, the border, the margo and the torus. The margo contributed a relatively large fraction of flow resistance, while the torus, the border and the secondary cell wall formed a small fraction. The size and position of the pores in the margo had a significant effect on the fluid velocity. The number of pits were proportional to tracheid length. The power curve, S-curve and inverse curve were fitted the scatter plot of total pit resistance, total resistance, total resistivity, which was found that there were the negative correlation between them. The three scatter plot values were larger in the stem than in the root, indicating that the tracheid structure in the root was more conducive to water transport than the stem. The ratio of tracheid lumen resistance to pit resistance mainly was less than 0.6 in the stem and less than 1 in the root, indicating that the pit resistance was dominant in the total resistance of the stem and root.
Funder
the Basic Scientific Research Fund of Heilongjiang Provincial Universities
National Natural Science Foundation of China
Publisher
Public Library of Science (PLoS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献