Application of edge computing and GIS in ecological water requirement prediction and optimal allocation of water resources in irrigation area

Author:

Li YangORCID,Xie Jiancang,Jiang Rengui,Yan Dongfei

Abstract

The purposes are to use water resources efficiently and ensure the sustainable development of social water resources. The edge computing technology and GIS (Geographic Information Science) image data are combined from the perspective of sustainable development. A prediction model for the water resources in the irrigation area is constructed. With the goal of maximizing comprehensive benefits, the optimal allocation of water quality and quantity of water resources is determined. Finally, the actual effect of the model is verified through specific instance data in a province. Results demonstrate that the proposed irrigation area ecological prediction model based on edge computing and GIS images can provide better performance than other state of the art models on water resources prediction. Specifically, the accuracy can remain above 90%. The proposed model for ecological water demand prediction in the irrigation area and optimal allocation of water resources is based on the principle of quality water supply. The optimal allocation of water resources reveals the sustainable development ideas and the requirements of the optimal allocation model, which is very reasonable. The improvement of the system is effective and feasible, and the optimal allocation results are reasonable. This allocation model aims at the water quality and quantity conditions, water conservancy project conditions, and specific water demand requirements in the study area. The calculation results have great practicability and a strong guiding significance for the sustainable utilization and management of the irrigation area.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3