Assessing water resources systems’ dynamic resilience under hazardous events via a genetic fuzzy rule-based system

Author:

Simic Visnja1ORCID,Stojkovic Milan2,Milivojevic Nikola3,Bacanin Nikola1

Affiliation:

1. a Faculty of Science, University of Kragujevac, Kragujevac, Serbia

2. b Institute for Artificial Intelligence R&D Serbia, Novi Sad, Serbia

3. c Jaroslav Černi Water Institute, Belgrade, Serbia

Abstract

AbstractIn this paper, the use of a novel genetic fuzzy rule-based system (FRBS) is proposed for assessing the resilience of a water resources system to hazards. The proposed software framework generates a set of highly interpretable rules that transparently represent the causal relationships of hazardous events, their timings, and intensities that can lead to the system's failure. This is achieved automatically through an evolutionary learning procedure that is applied to the data acquired from system dynamics (SD) and hazard simulations. The proposed framework for generating an explainable predictive model of water resources system resilience is applied to the Pirot water resources system in the Republic of Serbia. The results indicate that our approach extracted high-level knowledge from the large datasets derived from multi-model simulations. The rule-based knowledge structure facilitates its common-sense interpretation. The presented approach is suitable for identifying scenario components that lead to increased system vulnerability, which are very hard to detect from massive raw data. The fuzzy model also proves to be a satisfying fuzzy classifier, exhibiting precisions of 0.97 and 0.96 in the prediction of low resilience and high rapidity, respectively.

Funder

Science Fund of the Republic of Serbia

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3