Eigenvalue-based entropy in directed complex networks

Author:

Sun YanORCID,Zhao Haixing,Liang Jing,Ma Xiujuan

Abstract

Entropy is an important index for describing the structure, function, and evolution of network. The existing research on entropy is primarily applied to undirected networks. Compared with an undirected network, a directed network involves a special asymmetric transfer. The research on the entropy of directed networks is very significant to effectively quantify the structural information of the whole network. Typical complex network models include nearest-neighbour coupling network, small-world network, scale-free network, and random network. These network models are abstracted as undirected graphs without considering the direction of node connection. For complex networks, modeling through the direction of network nodes is extremely challenging. In this paper, based on these typical models of complex network, a directed network model considering node connection in-direction is proposed, and the eigenvalue entropies of three matrices in the directed network is defined and studied, where the three matrices are adjacency matrix, in-degree Laplacian matrix and in-degree signless Laplacian matrix. The eigenvalue-based entropies of three matrices are calculated in directed nearest-neighbor coupling, directed small world, directed scale-free and directed random networks. Through the simulation experiment on the real directed network, the result shows that the eigenvalue entropy of the real directed network is between the eigenvalue entropy of directed scale-free network and directed small-world network.

Funder

National Natural Science Foundation of China

Qinghai Science and Technology Planning Project

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference43 articles.

1. Fast algorithm for detecting community structure in networks;ME Newman;Physical Review E Stat Nonlin Soft Matter Phys,2004

2. Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality;ME Newman;Physical Review E Statal Nonlinear and Soft Matter Physics,2001

3. Scientific collaboration networks. I. Network construction and fundamental results;M E Newman;Physical Review E Statal Nonlinear and Soft Matter Physics,2001

4. Extremality of degree-based graph entropies;S Cao;Information Sciences,2014

5. A mathematical theory of communication;CE Shannon;Bell System Technical Journal,1948

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3