Comparing predictors of sentence self-paced reading times: Syntactic complexity versus transitional probability metrics

Author:

Kapteijns Bob,Hintz FlorianORCID

Abstract

When estimating the influence of sentence complexity on reading, researchers typically opt for one of two main approaches: Measuring syntactic complexity (SC) or transitional probability (TP). Comparisons of the predictive power of both approaches have yielded mixed results. To address this inconsistency, we conducted a self-paced reading experiment. Participants read sentences of varying syntactic complexity. From two alternatives, we selected the set of SC and TP measures, respectively, that provided the best fit to the self-paced reading data. We then compared the contributions of the SC and TP measures to self-paced reading times when entered into the same model. Our results showed that while both measures explained significant portions of variance in reading times (over and above control variables: word/sentence length, word frequency and word position) when included in independent models, their contributions changed drastically when SC and TP were entered into the same model. Specifically, we only observed significant effects of TP. We conclude that in our experiment the control variables explained the bulk of variance. When comparing the small effects of SC and TP, the effects of TP appear to be more robust.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3