Towards high-resolution gridded climatology stemming from the combination of official and crowdsourced weather observations using multi-fidelity methods

Author:

van Beekvelt DaniëlleORCID,Garcia-Marti IreneORCID,de Baar Jouke

Abstract

The pursue of a high resolution gridded climate data and weather forecast requires an unprecedented number of in situ near-surface observations to model the sub-mesoscale. National meteorological services (NMS) have practical and financial limitations to the number of observations it can collect, therefore, opening the door to crowdsourced weather initiatives might be an interesting option to mitigate data scarcity. In recent years, scientists have made remarkable efforts at assessing the quality of crowdsourced collections and determining ways these can add value to the “daily business” of NMS. In this work, we develop and apply a multi-fidelity spatial regression method capable of combining official observations with crowdsourced observations, which enables the creation of high-resolution interpolations of weather variables. The availability of a sheer volume of crowdsourced observations also poses questions on what is the maximum weather complexity that can be modelled with these novel data sources. We include a structured theoretical analysis simulating increasingly complex weather patterns that uses the Shannon-Nyquist limit as a benchmark. Results show that the combination of official and crowdsourced weather observations pushes further the Shannon-Nyquist limit, thus indicating that crowdsourced data contributes at monitoring sub-mesoscale weather processes (e.g. urban scales). We think that this effort illustrates well the potential of crowdsourced data, not only to expand the current range of products and services at NMS, but also opening the door for high-resolution weather forecast and monitoring, issuing local early warnings and advancing towards impact-based analyses.

Publisher

Public Library of Science (PLoS)

Reference51 articles.

1. High-quality spatial climate data sets for the United States and beyond;C Daly;Transactions of the ASAE,2000

2. A European daily high-resolution observational gridded data set of sea level pressure;EJM van den Besselaar;Journal of Geophysical Research: Atmospheres,2011

3. Spatial regression of multi-fidelity meteorological observations using a proxy-based measurement error model;J de Baar;Advances in Science and Research,2022

4. The quiet revolution of numerical weather prediction;P Bauer;Nature,2015

5. Advances in weather prediction;RB Alley;Science,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3