Machine learning bias correction and downscaling of urban heatwave temperature predictions from kilometre to hectometre scale

Author:

Blunn Lewis P.1ORCID,Ames Flynn2ORCID,Croad Hannah L.2ORCID,Gainford Adam2ORCID,Higgs Ieuan2ORCID,Lipson Mathew3ORCID,Lo Chun Hay Brian2ORCID

Affiliation:

1. MetOffice@Reading University of Reading Reading UK

2. Department of Meteorology University of Reading Reading UK

3. Bureau of Meteorology Canberra Australia

Abstract

AbstractThe urban heat island (UHI) effect exacerbates near‐surface air temperature (T) extremes in cities, with negative impacts for human health, building energy consumption and infrastructure. Using conventional weather models, it is both difficult and computationally expensive to simulate the complex processes controlling neighbourhood‐scale variation of T. We use machine learning (ML) to bias correct and downscale T predictions made by the Met Office operational regional forecast model (UKV) to 100 m horizontal grid length over London, UK. A set of ML models (random forest, XGBoost, multiplayer perceptron) are trained using citizen weather station observations and UKV variables from eight heatwaves, along with high‐resolution land cover data. The ML models improve the T mean absolute error (MAE) by up to 0.12°C (11%) relative to the UKV. They also improve the UHI diurnal and spatial representation, reducing the UHI profile MAE from 0.64°C (UKV) to 0.15°C. A multiple linear regression performs almost as well as the ML models in terms of T MAE, but cannot match the UHI bias correction performance of the ML models, only reducing the UHI profile MAE to 0.49°C. UKV latent heat flux is found to be the most important predictor of T bias. It is demonstrated that including more heatwaves and observation sites in training would reduce overfitting and improve ML model performance.

Funder

National Centre for Earth Observation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3