Who will be where: Climate driven redistribution of fish habitat in southern Germany

Author:

Basen TimoORCID,Ros AlbertORCID,Chucholl ChristophORCID,Oexle SarahORCID,Brinker AlexanderORCID

Abstract

To improve the robustness of projections of freshwater fish distributions under climate change, species distribution models (SDMs) were calculated for six fish species in southwestern Germany with different ecological requirements along an upstream-downstream gradient in a multi-general circulation model (GCM) approach. Using the maximum entropy (Maxent) algorithm and a high number of occurrence records (N = 4684), species distributions were projected to future climate conditions derived from 13 GCMs across the most likely representative carbon pathways (RCP4.5 and 8.5) and two time spans (near future 2050, and far future 2070), resulting in 104 distribution maps per species that were then used for the statistical analysis of future trends. Climate change is likely to affect the distribution of four of the six fish species. The potential ranges of salmonids are predicted to decline by up to 92% (brown trout) and 75% (grayling). In contrast, habitat suitability for perch and roach is predicted to increase by up to 108% and 53%, respectively. Even when accounting for broad variation in GCMs and realistic RCPs, these results suggest climate change will drive a significant redistribution of fish habitat. Salmonid-dominated communities in headwaters seem more sensitive to climate change than the fish communities of downstream sections. Because headwaters are a prevailing element of the hydrographic network in southwestern Germany, such changes may result in large-scale regressions of valuable fish communities that currently occupy broad geographic niches.

Funder

LUBW Baden-Württemberg

Publisher

Public Library of Science (PLoS)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3