Abstract
To improve the robustness of projections of freshwater fish distributions under climate change, species distribution models (SDMs) were calculated for six fish species in southwestern Germany with different ecological requirements along an upstream-downstream gradient in a multi-general circulation model (GCM) approach. Using the maximum entropy (Maxent) algorithm and a high number of occurrence records (N = 4684), species distributions were projected to future climate conditions derived from 13 GCMs across the most likely representative carbon pathways (RCP4.5 and 8.5) and two time spans (near future 2050, and far future 2070), resulting in 104 distribution maps per species that were then used for the statistical analysis of future trends. Climate change is likely to affect the distribution of four of the six fish species. The potential ranges of salmonids are predicted to decline by up to 92% (brown trout) and 75% (grayling). In contrast, habitat suitability for perch and roach is predicted to increase by up to 108% and 53%, respectively. Even when accounting for broad variation in GCMs and realistic RCPs, these results suggest climate change will drive a significant redistribution of fish habitat. Salmonid-dominated communities in headwaters seem more sensitive to climate change than the fish communities of downstream sections. Because headwaters are a prevailing element of the hydrographic network in southwestern Germany, such changes may result in large-scale regressions of valuable fish communities that currently occupy broad geographic niches.
Publisher
Public Library of Science (PLoS)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献