SparsePro: An efficient fine-mapping method integrating summary statistics and functional annotations

Author:

Zhang WenminORCID,Najafabadi HamedORCID,Li Yue

Abstract

Identifying causal variants from genome-wide association studies (GWAS) is challenging due to widespread linkage disequilibrium (LD) and the possible existence of multiple causal variants in the same genomic locus. Functional annotations of the genome may help to prioritize variants that are biologically relevant and thus improve fine-mapping of GWAS results. Classical fine-mapping methods conducting an exhaustive search of variant-level causal configurations have a high computational cost, especially when the underlying genetic architecture and LD patterns are complex. SuSiE provided an iterative Bayesian stepwise selection algorithm for efficient fine-mapping. In this work, we build connections between SuSiE and a paired mean field variational inference algorithm through the implementation of a sparse projection, and propose effective strategies for estimating hyperparameters and summarizing posterior probabilities. Moreover, we incorporate functional annotations into fine-mapping by jointly estimating enrichment weights to derive functionally-informed priors. We evaluate the performance of SparsePro through extensive simulations using resources from the UK Biobank. Compared to state-of-the-art methods, SparsePro achieved improved power for fine-mapping with reduced computation time. We demonstrate the utility of SparsePro through fine-mapping of five functional biomarkers of clinically relevant phenotypes. In summary, we have developed an efficient fine-mapping method for integrating summary statistics and functional annotations. Our method can have wide utility in understanding the genetics of complex traits and increasing the yield of functional follow-up studies of GWAS. SparsePro software is available on GitHub at https://github.com/zhwm/SparsePro.

Funder

Fonds de recherche du Québec – Nature et technologies

Healthy Brains, Healthy Lives doctoral scholarship

Quebec’s Ministère de l’Économie et de l’Innovation

Fonds de recherche du Québec

Canada Research Chair funded by the Canadian Institutes of Health Research

Natural Sciences and Engineering Research Council (NSERC) Discovery Grant

Canada First Research Excellence Fund Healthy Brains for Healthy Life (HBHL) initiative New Investigator start-up award

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3