Mob4-dependent STRIPAK involves the chaperonin TRiC to coordinate myofibril and microtubule network growth

Author:

Berger JoachimORCID,Berger Silke,Currie Peter D.ORCID

Abstract

Myofibrils of the skeletal muscle are comprised of sarcomeres that generate force by contraction when myosin-rich thick filaments slide past actin-based thin filaments. Surprisingly little is known about the molecular processes that guide sarcomere assembly in vivo, despite deficits within this process being a major cause of human disease. To overcome this knowledge gap, we undertook a forward genetic screen coupled with reverse genetics to identify genes required for vertebrate sarcomere assembly. In this screen, we identified a zebrafish mutant with a nonsense mutation in mob4. In Drosophila, mob4 has been reported to play a role in spindle focusing as well as neurite branching and in planarians mob4 was implemented in body size regulation. In contrast, zebrafish mob4geh mutants are characterised by an impaired actin biogenesis resulting in sarcomere defects. Whereas loss of mob4 leads to a reduction in the amount of myofibril, transgenic expression of mob4 triggers an increase. Further genetic analysis revealed the interaction of Mob4 with the actin-folding chaperonin TRiC, suggesting that Mob4 impacts on TRiC to control actin biogenesis and thus myofibril growth. Additionally, mob4geh features a defective microtubule network, which is in-line with tubulin being the second main folding substrate of TRiC. We also detected similar characteristics for strn3-deficient mutants, which confirmed Mob4 as a core component of STRIPAK and surprisingly implicates a role of the STRIPAK complex in sarcomerogenesis.

Funder

National Health and Medical Research Council

National Health and Medical Research Council of Australia

State Government of Victoria

Australian Government

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3